/* -*- MaTX -*- * * NAME * lqe() - Continuous-time linear quadratic estimator * * SYNOPSIS * {L,P} = lqe(A,G,C,Q,R) * Matrix L,P; * Matrix A,G,C,Q,R; * * DESCRIPTION * Given the continuous-time system: * . * x = Ax + Bu + Gw * z = Cx + Du + v * * with process noise and measurement noise covariances: * * E[w] = E[v] = 0, E[ww#] = Q, E[vv#] = R * * lqe() returns the gain matrix L of the Kalman filter * . * x = Ax + Bu + L(z - Hx - Du) * * which generates an LQG optimal estimate of x. * * lqe() also returns Riccati equation solution P which is the estimate * error covariance. * * SEE ALSO * lqr and dlqe */ Func List lqe(A, G, C, Q, R) Matrix A, G, C, Q, R; { Matrix L, P; {L,P} = lqr(A#, C#, G*Q*G#, R); L = L#; P = P#; return {L,P}; }