
MATX/RTMATX: A Freeware for Integrated CACSD

Masanobu Koga

Department of Mechanical and Environmental Informatics

Tokyo Institute of Technology

2-12-1, Oh-okayama, Meguro-ku, Tokyo 152-8552, JAPAN

Tel: +81-3-5734-2328; Fax: +81-3-5734-2328

E-mail: koga@mei.titech.ac.jp

1 Introduction

The purpose of this paper is to give an overview
of a cost-e�cient integrated CACSD environment
MATX/RTMATX. The software supports not only the
analysis of control systems, and the design of con-
trollers, but also the real-time implementation of con-
trollers.

MATX/RTMATX is distributed as a free software and is
used in many universities and several companies mainly
in Japan. This session focuses on the applications in
some �elds, such as robot motion control, visual simula-
tion, mathematical modeling with symbolic manipula-
tion, economics, and education in control engineering.

2 MATX and RTMATX

MATX [1] is a high-performance programming language
for scienti�c and engineering computation. It is a
type-oriented language and is equipped to recognize
several data types such as integer, real number, com-
plex number, string, polynomial, rational polynomial,
matrix, array, index, and list. MATX provides not
only command-line interpreter (matx) whose interfaces
are similar to the use of matlab [2] but also compiler
(matc).

During the last several years, there has been an in-
creased interest in automating the process of imple-
menting digital controllers. It aims to have a bet-
ter consistency between the designed and implemented
controllers. RTMATX enables us to do analysis of plant,
synthesis of controller, modeling of plant, and real-
time implementation for the experiment, all in one
software environment. Comparing the conventional
method which generates C code from block diagram
[3, 4, 5], it is possible to repeat tuning of controllers
and experiment without re-compile, since the proposed
method enables us to include routines for design of con-
trol systems to the implemented programs.

2.1 Program developing process

Figure 1 and Fig. 2 show the program developing pro-
cess in Matlab and MATX, respectively. In the pro-

Specs
Editor

emacs
vi

Editor
emacs
vi

ctest.c

cc

C Compiler

Matlab

ctest.mex

+

-
test.m

Figure 1: Program Developing Process in Matlab

gram developing process in Matlab, the user usually
realizes the algorithms in an m-�le (test.m) according
to the requirement (specs). The m-�le is tested several
times until it satis�es the requirement. It is possible to
call the user's C or Fortran subroutines (ctest.mtex),
from Matlab which are generated from the source codes
(ctest.c) by the C- or Fortran- compiler.

ctest.c

test.mm

vi
emacs

Editor

vi
emacs

Editor

matx

matc

-Lib

MaTX

Specs
test

(User’s C Function)

-

+

-

+

Figure 2: Program Developing Process in MATX

In the program developing process in MATX, the user
makes several procedures (mm-�les) using a favorite
editor (vi, emacs, or so) according to the requirement
(specs). The interpreter (matx) enables us to test out

the mm-�les interactively �le-by-�le or line-by-line. If
the mm-�le implementation of an algorithm is not e�-
cient enough in the interpreter environment, the mm-
�les are compiled to the executable program (test) by
the compiler (matc). It is possible to call the C func-
tions from the MATX program by linking C code �les
(ctest.c). Finally, the executable �le is executed to
check whether all requirements are satis�ed.

The compiler generates the portable C code �les if it
is invoked with the option -mm, and it generates the
object �le if it is invoked with the option -c. These
options are useful when matc is invoked by make in
makefile. Figure 3 shows an example of the genera-
tion of the executable program. On the 1st step, the C
�les sub1.c and sub2.c are generated from sub1.mm

and sub2.mm, respectively. On the 2nd and 3rd step,
the object �les sub3.o and sub1.o are generated from
sub3.mm and sub1.c, respectively. The 4th step gen-
erates the executable �le main from main.mm, sub1.o,
sub2.c, and sub3.o.

% matc -mm sub1.mm sub2.mm

% matc -c sub3.mm

% matc -c sub1.c

% matc main.mm sub1.o sub2.c sub3.o

Figure 3: Steps to generate executable program

2.2 Running environment

At the moment, MATX is checked to run in the envi-
ronment shown in Table 1, and RTMATX is checked to
run in the environment shown in Table 2.

Table 1: MATX Running environment

Computer OS & Compiler
CRAY C916 Cray UNICOS
NEWS5000X NEWS-OS 4.2.1R
JCC PowerPC JCC BSD+ 1.0
HP 9000/755 HP-UX
DEC (Alpha) Digital-Unix V3.2G
SGI (R10000) IRIX 6.4 System V R.4
Mips RC6280 UMIPS4.52C
Sun(Sparc) SunOS4.1.x, Solaris 2.(5j6).x
Sun(X86) Solaris 2.(5j6).x
IBM-PC/AT Linux (1.2.x, 2.0.x)
IBM-PC/AT FreeBSD 2.1.x, FreeBSD 2.2.x
IBM-PC/AT BSD/OS 2.0
IBM-PC/AT Windows 95/NT, (Visual C++)
IBM-PC/AT Windows 95/NT, (DJGPP)
IBM-PC/AT DOS, (DJGPP)

RTMATX for Windows 95 with Visual C++ uses

thread-API and multimedia-timer-API to implement
the real-time control facility. RTMATX for Windows
95 and DOS with DJGPP uses DPMI (Dos Protected
Mode Interface) service to implement the protected-
mode interruption. RTMATX for DOS with Borland
C++ generates the real-mode DOS program.

Table 2: RTMATX Running environment

Computer OS & Compiler
IBM-PC/AT Windows 95, (Visual C++)
IBM-PC/AT Windows 95, (DJGPP)
IBM-PC/AT DOS, (DJGPP)
IBM-PC/AT DOS, (Borland C++)

3 Interpreter and Compiler

MATX provides not only the interpreter but also the
compiler. The users can extend the functionality of a
program by implementing algorithms as functions in
mm-�les. It is very easy to call the user C functions
fromMATX programs by linking C code �les to the mm-
�les. This allows us to utilize huge pre-exist C routines
and speed up the rate of computation and improve the
e�ciency of memory usage.

3.1 Script �le and library module

One mm-�le may be used both as a script �le in the
interpreter environment and a library module for the
compiler. The interpreter calls the C preprocessor be-
fore parsing the �le with de�ning as ' MATX =1', while
the compiler calls the C preprocessor with de�ning as
' MATC =1'. It enables the user to make an mm-�le
which works in the di�erent way for the interpreter
and the compiler without modi�cation.

If the user wants to run an mm-�le as a script �le, e.g.
for debugging, the following example in Fig. 4 shows
a method. If the mm-�le is executed as a script �le
in the interpreter, the variables A, B and C are de-
�ned as a global variables which are accessible from
the command-line after the execution. If the mm-�le
is compiled to a library module, those variables are de-
�ned as local variables which exist only in the function.

3.2 Executable script �le

A shell script in UNIX operating system is a sequence
of shell commands stu�ed into a text �le. The �le is
made executable by turning on the execute bit (via
chmod +x filename) and then the name of the �le is
typed at a shell prompt. Similarly, a MATX program
is a bunch of MATX statements and de�nitions thrown
into a �le. The user then turn on the execute bit and
type the name of the �le at a shell prompt. However,
the �le has to indicate that this is a MATX program

#if __MATC__
Func void afo()
{

Matrix A,B,C;
#endif

A = [[1 2][3 4]];
B = [[5 6][7 8]];
C = A + B;
print A,B,C;

#if __MATC__
}
#endif

Figure 4: Script and library module

and not a shell program, so we need an additional step.
In the standard UNIX-like operating system, this step
involves placing the line

#! /usr/local/bin/matx

as the �rst line of the �le. Figure 5 shows how to
make an executable mm-�le script which calculate the
addition of two matrices.

#! /usr/local/bin/matx

Func void main()
{

Matrix A,B,C;

read A,B;
C = A + B;
print A,B,C;

}

main();

% emacs addmat.mm
% chmod a+x addmat.mm
% addmat

Figure 5: Executable Script �le

3.3 Independent application

The compiler matc generates the executable program
which works independently of MATX environment. The
arguments to the command can be accessed as strings
from the mm-�le. Figure 6 shows a program which
shows the name of the command and the result of the
addition of the arguments.

Func void main(argc, argv)
Integer argc;
List argv;

{
String name, arg1, arg2;
Integer a, b;

{name, arg1, arg2} = argv;
print "Command name is", name, "\n";
a = Integer(arg1);
b = Integer(arg2);
print a + b;

}

Figure 6: Command line arguments

4 Integration of Design and Real-time

Implementation

MATX/RTMATX supports not only o�-line design, but
also on-line design. In other words, it is possible to un-
dertake an analysis of a plant, synthesis of a controller,
modeling of the plant, and real-time implementation
for experimental use, all in one software environment.
By utilizing this software, it is possible to repeat the de-
sign of control-system cycle e�ciently, to achieve good
performance of the closed-loop system.

The typical procedure for the design of control sys-
tems supported by the conventional CACSD software
is shown in Fig 7. First, the plant, whose mathemat-
ical model has been determined by input-output data
or a physical formula, is analyzed. Then, the synthe-
sis of the controller, simulations, and experiments are
repeated until the design speci�cation is satis�ed. Af-
ter the performance of the closed-loop system has been
veri�ed by simulation, the program for the experiment
is implemented in another software environment. It is
apparent that the design of the control system and the
real-time implementation are separated in this proce-
dure.

MATX/RTMATX provides a software environment to
deal with a procedure for the design of control systems,
in which the design speci�cation is satis�ed by iterat-
ing the analysis of the plant, the synthesis of the con-
troller, simulations, experiments, and the modeling of
the plant. MATX/RTMATX comprehensively supports
the whole design cycle. Figure 8 shows the proposed
design cycle for control systems.

4.1 Simulation and real-time implementation

This subsection deals with an examples to illustrate
the facility of MATX/RTMATX for simulation and real-
time implementation. The �rst plant is the well-known
inverted pendulum, shown in Fig. 9. When the state

(f) experiment

(b) modeling

(c) analysis

(d) synthesis

(e) simulation

input-output
data

(a) physical
formula

identification

Simulink
SystemBuild
Vissim

XMath
MATLAB

MaTX

COMPILE

realSim/AC-100
Real-Time Workshop

VxWorks

Figure 7: Conventional design cycle of control systems

of the system is chosen as

xT =
�
x1 x2 x3 x4

�
=
�
r � _r _�

�
;

then the state equation is described as

dx

dt
=

2
664

x3
x4

(1 + � sin2 x2)
�1fa32 sinx2 cosx2 + a33x3

(1 + � sin2 x2)
�1fa42 sinx2 + a43 cosx2x3

+ a34 cosx2x4 + a35 sinx2x
2
4 + b3ug

+ a44x4 + a45 sinx2 cosx2x
2

4 + b4 cosx2ug

3
775 ;

where aij , bi, and � are parameters of the plant. Next,
design an LQ state feedback control law and an ob-
server for the linearized model of the plant. The ob-
server is discretized for digital control such that

z[k + 1] = Âdz[k] + B̂dy[k] + Ĵdu[k]

u[k] = �F x̂[k]

x̂[k] = Ĉz[k] + D̂y[k]:

4.1.1 Simulation: The simulation program
consists of three functions, main(), diff eqs(), and
link eqs(). Function diff eqs() is a function

RtMaTX

(b) modeling

(d) synthesis

(e) simulation

(f) implementation

(a) physical
formula data

input-output

identification

(c) analysis

Figure 8: New design cycle of control systems

that calculates the derivative of state vector _x, and
link eqs() is a function that calculates the control
inputs u. In main() the di�erential equation is inte-
grated according to the RKF45 algorithm, automati-
cally changing the step size to guarantee the speci�ed
computational error. The listing of diff eqs() and
link eqs() are shown in Figures 10 and 11. Note that
the program can be written in almost the same way
as the mathematical notation. See [6] for the detailed
description.

4.1.2 Real-time implementation: The real-
time implementation program consists of three func-
tions, the main function, main(), the on-line function,
on task(), and the o�-line function, off task(). The
function on task() is a function for the calculation
of control inputs, and off task() is the user-interface
function for showing and changing parameters. Once
the real-time control starts, on task() is called every
sampling period. The listing of on task() is shown
in Fig. 12. The function sensor() returns the out-
put of the the plant, as measured by the sensors, and
actuator() operates the actuator. Since the variables,
Ah, Bh, Ch, Dh, Jh, F are declared as real-time variables,
they can be changed while the real-time control is run-
ning. Note that the di�erence between the functions
on task() and link eqs() in the simulation program
consists of two lines. Therefore, it is possible to obtain
the on-line function for the real-time experiment from
the simulation program with a two-line change. This

r

u

�

potentiometer

belt

motor

poweramp

pendulum

cart

puri

Figure 9: Inverted pendulum

is one of the most useful features of RTMATX.

4.2 Toolbox for analysis and design

At the moment, MATX provides the following toolbox
for the analysis and design.

� Matrix operation toolbox

� Signal processing toolbox

� Graph drawing toolbox

� Control system toolbox

� ...

Each toolbox contains a set of mm-�les for the inter-
preter and a library for the compiler. The algorithm is
implemented as the functions in each mm-�le. The in-
terpreter (matx) loads the mm-�les if they are required
from the user program or the command-line, while the
compiler (matc) links the library with the user pro-
gram.

4.3 Memory management for real-time imple-

mentation

If people write a program with a matrix notation like
Matlab, the program is easy to read. However, the size
of memory required for the calculations is not deter-
mined until the execution time. This is why functions
like malloc() are necessary. These functions are slow,
since they are general-purpose memory-management
functions. Therefore methods to improve the speed of
computation should be considered.

MATX has its own memory-management mechanism to
reduce the number of calls to the memory-allocation

Func void diff_eqs(dx, t, x, u)
Matrix dx, x, u;
Real t;

{
Real c2, s2, dm;

c2 = cos(x(2));
s2 = sin(x(2));
dm = 1 + alpha*s2^2;
dx =
[[x(3)]
[x(4)]
[dm~*(a32*s2*c2 + a33*x(3)
+a34*c2*x(4)+a35*s2*x(4)^2+b3*u(1)]
[dm~*(a42*s2 + a43*c2*x(3)+a44*x(4)
+a45*s2*c2*x(4)^2+b4*c2*u(1)]];

}

Figure 10: Function for state equation

Matrix Ah, Bh, Ch, Dh, Jh;

Func void link_eqs(u, t, x)
Matrix u, x;
Real t;

{
Matrix y, xh;

y = C*x; // output equation

xh = Ch*xo+Dh*y; // state estimation
u = - F*xh; // state feedback
z = Ah*z + Bh*y + Jh*u; // observer

}

Figure 11: Function for control input

function [7]. In particular, no memory-allocation func-
tion is called when real-time control is executed [8].

5 Interface to Other Softwares

5.1 Process communication

One realization of coupling the other software with
MATX is to use a pipe, which can be used in standard
UNIX operating system. The function popen() takes
the name of the other software as the argument and re-
turns a process descriptor with which MATX program
can communicate with the software by using the �le
handling functions, such as fprintf() and fscanf().

Figure 13 shows the program which communicates with
the drawing tool gnuplot to draw a sin(x) curve. The
graph toolbox communicates with gnuplot in the sim-
ilar fashion.

Realtime Matrix Ah,Bh,Ch,Dh,Jh,F;

Func void on_task()
{

Matrix y, xh;

y = sensor();
xh = Ch*z+Dh*Y; // state estimation
u = - F*xh; // state feedback
z = Ah*z+Bh*y+Jh*u; // observer
actuator(u);

}

Figure 12: Function for real-time control

if ((pid = popen("gnuplot")) < 0) {
error("Can't open %s", "gnuplot");

}

fprintf(pid, "plot sin(x)\n");
pause;
fprintf(pid, "quit\n");
pclose(pid);

Figure 13: Process communication with pipe

5.2 Link C code to mm-�le

It is possible to call the C functions from MATX pro-
grams by linking those �les to the mm-�les. This allows
us to utilize huge pre-exist C routines and the results
generated by the other softwares.

The symbolic manipulation softwares, such as Mathe-
matica [9] and Maple [10], are very useful tools for the
physical and mathematical modeling. The user can
save the calculated model as the C code �le, which is
linked with the mm-�le. The companion paper [11]
deals with this method to generate the model for the
simulation.

Even if the source code is not available, the libraries for
the C program can be linked with the MATX program.
The functions contained in the library can be called
from the MATX program either directory or through the
simple interface function. The companion paper [12]
deals with this method to make the three dimensional
graph (3DG) and the graphical user interface (GUI) by
linking OpenGL library[13].

5.3 Data conversion

MATX provides the lower level �le access functions such
as fread() and fwrite() which works similar as those of
C functions. These functions can be used for the data-
conversion between the other softwares.

For example, matlab read() and matlab write()

reads and writes the matlab mat-format (V4) data.

In Fig. 14, the 1st statement writes four matrices as
double precision to the �le qq.mat, and the 3rd state-
ment reads four matrices from the �le rr.mat which
was generated by matlab.

matlab_write("qq.mat",{A,B,C,D},"double");
pause "Run matlab to generate rr.mat";
{A2,B2,C2,D2} = matlab_read("rr.mat");

Figure 14: Data conversion with matlab

References

[1] Masanobu Koga and Katsuhisa Furuta. Pro-
gramming language MaTX for scienti�c and engineer-
ing computation. In Derek A. Linkens, editor, CAD
for Control Systems, chapter 12, pages 287{317. Mar-
cel Dekker, Inc., July 1993.
[2] Inc. The Math Works. MATLAB User's Guide.
The Math Works, Inc., 24 Prime Park Way, Natick,
Mass. 01760-1500, USA, 1992.
[3] Inc. Integrated Systems. MATRIXx Core. 3260
Jay Street Santa Clara, California 95054, USA, 8 edi-
tion, 1991.
[4] Inc. The Math Works. SIMULINK User's Guide.
24 Prime Park Way, Natick, Mass. 01760-1500, USA,
�rst edition, 1992.
[5] Ola Dahl. An interactive environment for real
time implementation of control system. CADCD '91,,
pages 518{523, 1991.
[6] Masanobu Koga. An interactive environment for
simulation and real-time implementation of control sys-
tems. Proc. of KACC'95, Seoul, Korea, pages 336{339,
1995.
[7] Masanobu Koga, Hiroaki Toriumi, and Mitsuji
Sampei. Real-time cad of control systems achieving
cooperation of modeling and design of controllers. Proc.
of CACSD'96, Dearborn, Michigan, U.S.A., pages 457{
462, 1996.
[8] Masanobu Koga, Hiroaki Toriumi, and Mitsuji
Sampei. An integrated software environment for de-
sign and real-time implementation of control systems.
11th IFAC Symposium on System Identi�cation, pages
1603{1609, 1997.
[9] Stephen Wolfram. Mathematica. Addison-Wesley
Publishing Company, Inc., 1991.
[10] K.M.Heal, M.L.Hansen, and K.M.Rickard.Maple

V { Learning Guide. Springer, 1996.
[11] Tasuku Hoshino and Katsuhisa Furuta. Mixed
numeric/symbolic manipulation of equations using
matx and mathemaitca. CACSD'99, pages ??{??, 1999.
[12] Kenichiro Nonaka. VRSC: Visual robot simula-
tion and control with rtmatx. CACSD'99, pages ??{??,
1999.
[13] Ron Fosner. OpenGL Programming for Win-

dows 95 and Windows NT. Addison-Wesley Developers
Press, 1997.

