
Setting up MATX-based Laboratory
Experimental Systems

- A Pendulum System with Windows OS -

Masami Iwase ∗ Shingo Kojima ∗∗ Teruyoshi Sadahiro ∗
Shoshiro Hatakeyama ∗

∗Department of Robotics and Mechatronics, Tokyo Denki University,
Tokyo, Japan, (e-mail: {iwase,sadahiro,sho}@fr.dendai.ac.jp).
∗∗Graduate School of Computers and Systems Engineering,

Tokyo Denki University, Saitama, Japan,
(e-mail: kojima@hatalab.k.dendai.ac.jp)

Abstract: This paper presents setting up experimental systems based on MATX in laboratories
and undergraduate school. This configuration has advantages of introduction cost, maintenance
fee, easy reconstruction compared with commercial equipments. The advantages and effective-
ness of the proposed experimental system configuration are demonstrated in this paper by using
a Furuta pendulum system as an example.

1. INTRODUCTION

Setting up experimental systems in laboratories and un-
dergraduate school with general-purpose devices and free
softwares has several advantages from educational view-
points such as deep observation to controller equipments,
and easy reconstruction in accordance with each intended
use as well as from cost viewpoints such as introduction
cost and maintenance fee, when compared with commer-
cial experimental systems.

In the embedded systems area, as Koopman et al. [1992]
says, experts, who are confident in electric devices in-
cluding I/O devices and micro computers and any neces-
sary softwares concerned with operating such devices, are
required to make compact, specialized, low-cost systems
with high integration density. There are so many varia-
tions of embedded systems generally because they are cus-
tomized and specialized for each intended use. Sometimes
specialized hardwares are developed for a use, and then the
softwares associated with the hardwares also have to be de-
veloped. Real-time control is essentially required for those
embedded systems to operate target plants. Abundant
experiences and deep knowledges about system integration
are also required. Hence, to built some total experimental
system in laboratories and undergraduate school may be
good occasion and chance to acquire such experiences.

MATX, a multi-platform free software developed by Koga
[1992] and Koga [1999], is a programming language with
easy description compatible with C language. It supports
numerical analysis algorithms and calculations in science
and engineering fields handling integer, real, and complex
values, vectors, arrays and matrices, polynomials, rational
polynomials, character strings, files, etc. MATX also equips
fulfilling functions for control system analysis and design,
and provides a real-time control environment for real
systems on Windows platform. We focus on the following
features of MATX: 1) any I/O devices and hardwares
whose device drivers for use on Windows are provided

by developers can be used from MATX. 2) the sequence
procedure over analysis, design, computer simulations and
real experiments can be performed with MATX. 3) MATX
has fulfilling functions for control system analysis and
design. Those features allow us to make experimental
systems based on MATX, and several examples have been
reported by Hatakeyama [1999] and Hoshino [1999], for
example.

In this paper, we present the built-up process of a Furuta
pendulum system in our laboratory. We also describe the
configuration of the real-time system with MATX, espe-
cially focusing on how the devices with drives for Windows
OS use are connected to MATX. The experimental system
is built up for swinging up a Furuta pendulum by a state-
dependent Riccati equation based control. In the control
method, the state-dependent Riccati equation has to be
solved at each sampling interval, and it implies that some
complicated matrix calculations are necessary to solve the
Riccati equation every sampling interval. However, utiliz-
ing MATX-based experimental systems, those requirements
are easily provided. We intend to demonstrate those ad-
vantages of introducing MATX-based experimental systems
via the example.

2. EXPERIMENTAL FURUTA PENDULUM SYSTEM

A Furuta pendulum shown in Fig.1 is used as the ex-
perimental system. The Furuta pendulum consists of a
single pendulum and a rotational motor with an arm. The
pendulum is hinged to the arm of the motor via a passive
joint. Therefore this system is under-actuated.

The configuration of the total Furuta pendulum system is
shown in Fig.2. The motor accepts torque commands as
analog voltage signals from the computer, and then a D/A
interface is required to plug the motor to the computer.
The system has two measurements, the rotational angles
of the motor and the pendulum. The rotational angle of
the motor is picked by a resolver installed in the motor

Fig. 1. Photo of a single Furuta pendulum. A pendulum is
hinged to the arm of the rotating motor. The system
has only one actuator and two rotational encoders for
angle measurement.

DriverDriver

DriverDriver

Wrapping
Function

Wrapping
Function

Wrapping
Function

Wrapping
Function

ControllerController Wrapping
Function

Wrapping
Function DriverDriver

DriverDriver

DriverDriver

Wrapping
Function

Wrapping
Function

Wrapping
Function

Wrapping
Function

ControllerController Wrapping
Function

Wrapping
Function DriverDriver

Furuta PendulumFuruta Pendulum

Counter

Counter

RT-MaTX

D/A

Computer

Torque command

Rotational angle of
motor measured by

resolver

Rotational angle of
pendulum

measured encoder

Fig. 2. A block diagram shows the experimental system
configuration.

Table 1. List of devices used in the experimen-
tal system.

Direct drive
motor

DR5B-030G
(YOKOGAWA)

max torque 30 [Nm],
max speed 5.0 [rps]

Resolver
(motor)

- 557056 [p/rev]

Rotary encoder
(pendulum)

MES-30-4500PST4
(MTL)

4500 [p/rev]

I/O board PCI-360116 (Inter-
face)

D/A (16bit), Counter
(1ch, 24bit)

Counter board PCI-6201
(Interface)

Counter (4ch, 24bit)

Computer - (Hand-made) OS: Windows XP SP3,
CPU: Core2 Duo
2.33GHz, Memory:
2.0GB RAM

inside. The angle of the pendulum is measured by a
rotary encoder. To capture those angles, a counter board
is required. In our system, the devices and equipments
used in the system are general-purpose products which
are easy to be get, and can be replaced by similar others.
The equipments and devices with specifications are listed
in Table 1.

A mathematical model of the Furuta pendulum is neces-
sary to analyze and design its control system. The coor-

ϕϕϕϕ
θθθθ

r
l

z

x
y

Fig. 3. Schematic figure and a coordinate system of a single
Furuta pendulum.

Table 2. Parameters in the Furuta pendulum.

Mass of pendulum mp 0.065 [kg]
Distance from the pivot to CG
of pendulum

` 0.123 [m]

Length of arm r 0.215 [m]
Moment of Inertia of pendu-
lum

J 0.0001554 [kgm2]

Moment of Inertia of arm Ja 0.0669 [kgm2]
Gravity acceleration g 9.81 [m/s2]
Viscus friction coefficient of
the pivot

cp 2.102× 10−4[Nms/rad]

Viscus friction coefficient of
the motor

ca 0.0926779 [Nms/rad]

dinate system, parameters and variables in this paper are
taken as shown in Fig.3. The notations and quantities of
parameters are also listed in Table 2. As shown in Åström
[2006], the equations of motion of the Furuta pendulum
system is given by(
J +mp`

2
)
θ̈ −mpr` cos θϕ̈

= (J +mp`
2)ϕ̇2 sin θ cos θ +mp`g sin θ − cpθ̇(

(Ja +mpr
2) + (J +mp`

2) sin2 θ
)
ϕ̈−mpr` cos θθ̈

= τ − caϕ̇− 2
(
J +mp`

2
)
ϕ̇θ̇ sin θ cos θ −mpr`θ̇

2 sin θ
(1)

where ϕ, θ and τ are the motor rotational angle, the
pendulum tilting angle and the motor torque, respectively.

We often meet situations in which a current system doesn’t
match to solve a problem at hand. In that case, we need
modify the system desirably, and want to modify it as soon
as possible, if feasible, with available something accessed
easily. We think integration also plays a prominent role
in problem resolution, although development of high per-
formance devices and equipments for the special use are
important. Hence we much pay attention to integration
with MATX in the following sections.

3. CONFIGURATION OF REAL-TIME SYSTEM
WITH RT-MATX

3.1 Connectivity

The proposed configuration of real-time experimental sys-
tems with MATX is illustrated in Fig.4. Any hardwares

Windows, Windows API

Hardware AHardware A

I/O device AI/O device A

Driver ADriver A

Hardware BHardware B Hardware CHardware C

I/O device BI/O device B I/O device CI/O device C

User I/O wrapsUser I/O wraps

MaTX / RT-MaTXMaTX / RT-MaTX

User I/OUser I/O

Driver BDriver B Driver CDriver C

Windows, Windows API

Hardware AHardware A

I/O device AI/O device A

Driver ADriver A

Hardware BHardware B Hardware CHardware C

I/O device BI/O device B I/O device CI/O device C

User I/O wrapsUser I/O wraps

MaTX / RT-MaTXMaTX / RT-MaTX

User I/OUser I/O

Driver BDriver B Driver CDriver C

Fig. 4. The schematic figure shows the configuration of
real-time systems with RT-MATX.
�

�

�

�

// Head files
#include "Gpcda.h" // for I/O common
#include "Fbida.h" // for D/A
#include "FbiEnc.h" // for counter

// Declare functions called from MaTX
extern "C" int __cdecl DA_Open(void);
extern "C" int __cdecl DA_Close(void);
extern "C" int __cdecl DA_Out(WORD);
extern "C" int __cdecl Counter_Open(void);
extern "C" int __cdecl Counter_Close(void);
extern "C" int __cdecl Counter_Get(int);

// Libraries to be linked
#pragma comment(lib, "FbiDaDC.lib")
#pragma comment(lib, "FbiDa.lib")
#pragma comment(lib, "fbienc.lib")

Fig. 5. The header part of a sample code for user defined
wrapping functions.

are available for the configurations as long as the corre-
sponding device drivers are provided with libraries which
can be used from C and C++. This feature is very useful
to introduce new devices and equipments, and has some
advantage because commercial products such as MATLAB
require special drivers and sometimes need to wait for
providing those special drivers. In the configuration, we
just prepare a small user defined wrapping functions in C
or C++ languages, and it is always very easy. In Fig.4,
pairs of hardwares, I/O devices and drivers should have
connectivity. The connectivity between MATX and drivers
should be ensured by the user defined wrapping functions.
Therefore what we need prepare from software aspect
is only two programs: user programs for MATXand user
defined wrapping functions.

In this configuration, some user defined functions are re-
quired to bridge a gap between MATXand device drivers
provided like Windows API. The default calling convention
in Windows API is __stdcall. On the other hand the de-
fault calling convention for C/C++ programs is __cdecl.

In almost case, device drivers for windows are written in
the __stdcall convention, however, executables in MATX
are written in the __cdecl. Hence we need the user defined
functions playing wrapping functions. What we need re-
mind in such programs is only to declare external functions
with __cdecl. An example code such is given in Fig.5.

3.2 RTMATX

MATX provides a real-time environment which is called
RT-MATX. Codes for RT-MATX are completely compat-
ible with ones for MATX. The real-time implementation
with RT-MATX consists of mainly three functions: the
main function, main(), the function executed in real-time,
on_task(), and the function executed in non real-time,
off_task(). Additionally a function called when a user
wants to break the execution is break_task(). A skele-
ton for the real-time implementation is given in Fig.6.
on_task may be called each sampling interval which is set
by rtSetClock(). The function name, on_task, should
be registered by rtSetTask(). The similar procedure for
break_task() is required.

on_task() may contain some function calls for getting
information from sensors and for putting input signal to
actuators. In on_task(), users can also write any codes
for MATX including function calls, matrix calculations etc.
as long as those codes can be executed within the set sam-
pling interval. This fact permits us to much easily imple-
ment sophisticated controllers or complicated controllers
which sometimes require messy calculation, large memory,
complicated if-then rules and so on. In the next section,
a State-Dependent Riccati equation control, which require
to solve a matrix Riccati equation depending a nonlinear
state-space representation every sampling interval, shows
up. However, we can write only a few codes to realize this
thanks to (RT)MATX. off_task() plays a user interface
function for showing and changing parameters, and control
of the mode.

Fig.7 shows relationship between files and MATX. MATX
consists of four systems, matx, matc, rtmatx and rtmatc.
matx and rtmatx are interpreters which can accept com-
mand lines interactively or run any scripts and source
codes written in *.mm format. matc and rtmatc are com-
pilers to make an executable from source codes in *.mm or
*.c formats.

At analysis, synthesis and simulation stages, so much and
frequent feedback is required to fix, modify and improve
programs. Users can do this without any compiling pro-
cess, and also check and verify execution results and status
easily from command lines because matx and rtmatx are
interpreters. This fact can be regards as an advantage of
MATX.

Once the program is fixed, an corresponding executable
can be obtained by compiling the source code with matc or
rtmatc. The executable can run faster than the interpreter
matx, so is essentially necessary for real-time operating.
matc and rtmatc can also compile any source codes writ-
ten in common C/C++ languages, and can link adequate
libraries to make the executable. Note that some linker
options are sometimes required when compile source codes
by rtmatc. A sample is given as follows.

�

�

�

�

// Declare external functions
Integer DA_Open();
Integer DA_Close();
Integer DA_Out();
Integer Counter_Open();
Integer Counter_Close();
Integer Counter_Get();

// Break task
Func void break_task()
{

rtStop(); // Stop the online task
DA_Out(0); // Clear DA output
DA_Close(); // Close DA I/O
Counter_Close(); // Close Counter I/O

}

// Online task
Func void on_task()
{

// write online task here
}

// Online task
Func void off_task()
{

// write offline task here
}

// Main
Func void main()
{

Real dt;
void on_task(), off_task(), break_task();

dt = 0.01;
dt = rtSetClock(dt); // Set sampling time
rtSetTask(on_task); // Set online task
rtSetBreak(break_task); // Set break task

DA_Open(); // Open D/A I/O
Counter_Open(); // Open counter I/O

rtStart(); // Start real-time task

off_task(); // Call offline task

rtStop(); // Stop real-time task

DA_Out(0); // Clear D/A output
DA_Close(); // close D/A I/O
Counter_Close(); // close Counter I/O

}

Fig. 6. A skeleton of RT-MATX program.

rtmatc -v *.mm *.lib -link -NODEFAULTLIB:libcd
-NODEFAULTLIB:libcmt

In usual case, drivers for I/O devices are provided as a
library file, *.lib. User defined wrapping functions are
prepared in *.c or *.cpp forms. Finally an executable is

.c.c

.lib.lib

.c.c

matcmatc matxmatx

.exe.exe

.mm.mmmatcmatc

.mat.mat

Analysis, Synthesis
Simulation

(Interpretation mode)

Analysis, Synthesis
Simulation

(Interpretation mode)Compile and link to make an executable fileCompile and link to make an executable file

Real-time operation
(compiled executable file)

Real-time operation
(compiled executable file)

User programUser programUser program
translated in C
User program
translated in C

Libraries provided
for corresponding

devices

Libraries provided
for corresponding

devices

User defined functions
for I/O wrapping

User defined functions
for I/O wrapping

Executable file
for real-time

operation

Executable file
for real-time

operation
Log filesLog files

.c.c

.lib.lib

.c.c

matcmatc matxmatx

.exe.exe

.mm.mmmatcmatc

.mat.mat

Analysis, Synthesis
Simulation

(Interpretation mode)

Analysis, Synthesis
Simulation

(Interpretation mode)Compile and link to make an executable fileCompile and link to make an executable file

Real-time operation
(compiled executable file)

Real-time operation
(compiled executable file)

User programUser programUser program
translated in C
User program
translated in C

Libraries provided
for corresponding

devices

Libraries provided
for corresponding

devices

User defined functions
for I/O wrapping

User defined functions
for I/O wrapping

Executable file
for real-time

operation

Executable file
for real-time

operation
Log filesLog files

Fig. 7. The diagram shows the relationship among files
concerned and the use of matx and matc.

Fig. 8. A captured screen of an oscilloscope measuring a
pulse pattern generated by RTMATX with 4.0[msec]
sampling interval.

obtained via matc. The executable may be used in almost
all real-time systems.

3.3 Jitter variation test

Basically, RTMATX realizes the real-time environment on
the Windows operating system. Accurate timers and well-
conceived interrupt structure are necessary for realizing
good real-time performance. Windows has several timers,
and RTMATX seems to use a multimedia timer. The time
resolution of the multimedia timer is 1[msec]. However,
its accuracy isn’t well known. Therefore we tried to check
the accuracy of the real-time performance. We generated
a on-off pulse pattern with 4.0 [msec] time cycle and 50%
on-off duration ratio, and output the pattern as voltage
signal from D/A board. The signal was measured by an
oscilloscope as shown in Fig.8. The jitter variation of the
measured signal was analyzed. Fig.9 is the histogram of
the jitter variation in this case. From the figure, the real-
time performance of RTMATX is almost accurate because
95% situations were performed with about 4.0[msec] sam-
pling interval. The remaining 5% situations are distributed
around 5.0[msec]. As the result, even though the real-time

 0

 20

 40

 60

 80

 100

 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

Fr
eq

ue
nc

y [
%]

Time [msec]

Fig. 9. The histogram of jitter variation when a RTMATX
program was running with 4.0[msec] sampling inter-
val. The vertical quantities shows each frequency with
percentage. The frequency around 4.0[msec] is about
95%. Only 5% situations with longer sampling interval
appeared.

performance of RTMATX is almost reliable, sometimes
longer sampling period cases may appear. In those longer
sampling cases, the jitter variation seems to be concen-
trated around 1.0[msec] that is equal to the time resolution
of the multimedia timer. Therefore RTMATX can realize
the real-time environment in which the minimum time
resolution is 1.0 [msec] and the accuracy is also 1.0 [msec].

4. EXAMPLE: SWING-UP OF FURUTA PENDULUM
BY SDRE CONTROL

Swinging up a single Furuta pendulum by the State-
Dependent Riccati Equation (SDRE) approach on the
real-time environment based on RT-MATX is presented as
an example. A single Furuta pendulum system has been
shown in Fig.3. The SDRE approach is named after a
state-dependent Riccati equation which has to be solved
every sampling interval to get a stabilizing control law.
Basically, a state-dependent coefficient (SDC) form in
the state-space representation is required in the SDRE
approach. Note that the parameterization of SDC is not
unique and the optimality under the SDRE approach
depends on the choice of the parameterization. Therefore
a control law obtained by the SDRE approach is regarded
as a quasi-optimal control. We can refer to Çimen [2008]
for the details about the SDRE control. Here we chosen a
SDC parameterization as follows:
M(q)q̈ + C(q, q̇)q̇ +G(q)q = τ

q = [ϕ θ]T

M(q) =
[
Ja +mpr

2 + (J +mp`
2) sin2 θ, −mpr` cos θ

−mpr` cos θ, J +mp`
2

]

C(q, q̇) =
[
(J +mp`

2)θ̇ sin(2θ) + ca, mpr`θ̇ sin θ
−(J +mp`

2)ϕ̇ sin θ cos θ, cp

]

G(q) =
[
0, 0
0, −mp`g sin θ/θ

]
.

(2)
With (2), we have a SDC state-space representation:

�

�

�

�

// Get information from sensors
phi = -Counter_Get(3)/90000.0*(2.0*PI);
th = -Counter_Get(1)/18000.0*(2.0*PI);
dphi = (phi - pphi)/dt;
dth = (th - pth)/dt;
pphi = phi;
pth = th;
xh = [phi, th, dphi, dth]’;
// SDC representation
M = [[m1*r1^2 + J1 + m2*l1^2

+ (m2*r2^2 + J2)*sin(th)^2,
-m2*l1*r2*cos(th)]

[-m2*l1*r2*cos(th), m2*r2^2 + J2]];
H = [[(m2*r2^2 + J2)*sin(2*th)*dth + c1,

m2*l1*r2*sin(th)*dth]
[-(m2*r2^2 + J2)*sin(th)*cos(th)*dphi,

c2]];
G = [[0, 0]

[0, -m2*g*r2*sin/th]];
A = [[Z(2,2), I(2,2)]

[-M~*G, -M~*H]];
B = [[Z(2,1)][M~*[[1][0]]]];

// Optimal control
Q = diag(10.0, 5.0, 10000.0, 100.0);
R = [1.0];
{Ad,Bd}=c2d(A,B,dt); // discretization
{Fd,Pd} = dlqr(Ad,Bd,Q,R);// feedback gain
u = [-Fd*xh]; // input
// Output input signal
if(u(1)/k>=6.0){

V1 = 6.0;
} else if(u(1)/k<=-6.0){

V1 = -6.0;
} else{

V1 = u(1)/k;
}
DA_Out(Integer(V1*3276.8+32768));

Fig. 10. A part of on-line task codes for swinging-up a
Furuta pendulum by the SDRE control.

ẋ = A(x)x+B(x)u

x =
[
qT q̇T

]T

A(x) =
[

0, I
−M(q)−1G(q), −M(q)−1C(q, q̇)

]

B(x) =




0

M(q)−1

[
1
0

]

 .

(3)

A SDRE controller can be obtained by discretization of (2)
and updating the feedback gain every sampling period. At
k-th sampling period, we freeze the state x as xk. In that
moment, the SDC representation is given by ẋ = A(xk)x+
B(xk)u. Suppose the input takes a constant value, uk,
during a sampling interval. We approximately discretize
the frozen SDC like xk+1 = Φ(xk)xk + Γ(xk)uk. Finally
the SDRE controller can be obtained by uk = −F (xk)xk
solving the corresponding matrix discrete-time Riccati
equation with weight state-dependent matrices Q(xk) ≥ 0
and R(xk) > 0. This sequential procedure can be described

-3.5-3.0-2.5-2.0-1.5-1.0-0.5 0.0 0.5

 0 0.5 1 1.5 2 2.5 3

An
gle

s [
rad

] phi
theta

 -15 -10 -5 0 5 10 15

 0 0.5 1 1.5 2 2.5 3An
g.

Ve
l [r

ad
/s] d-phi

d-theta

 -6 -4 -2 0 2 4 6

 0 0.5 1 1.5 2 2.5 3To
rq

ue
 [N

m]

Time [sec]

u

Fig. 11. Experimental results of swinging up a Furuta
pendulum with the SDRE control.

in the on-line task of RTMATX, on_task() as shown
in Fig.10. We think it has been described simply, easily
and straightforwardly. The experimental results are shown
in Fig.11. The figures illustrates the SDRE control with
RTMATX works very well.

5. SOME EDUCATIONAL ASPECTS

The proposed configuration requires some knowledge
about lower layers such as I/O structures of devices, and
communication with device drives. The knowledge is im-
portant to make embedded systems consisting of hard-
wares plugged to microcomputers. Exclusive commercial
real-time environments tend to throw those factors into
a black box, but we think it is not good for education.
From that aspect, the proposed system may give users
much good chance to learn those structures and commu-
nications.

The configuration based on MATX has also several educa-
tional advantages. The first one is that the configuration
provides a seamless environment for analysis, synthesis,
simulation through real-time implementation. The second
point is that MATX is compatible with C-langrage, and
then enhances users to easily extend functions of MATX.
User defined wrapping functions for connection of device
drivers for Windows OS to MATX is one of those ex-
tentions. Hence we can think this configuration is well
suited for application. Actually, in our laboratory, the
configuration has been applied to a pendulum on cart
system, a multiple pendulum system, a linear motor sys-
tem, a heating system, a fuel-cell system, a segway-type
robot, a snake-like robot, a SCARA-type manipulator, a
unicycle simulator, etc. These facts illustrated that the
configuration is worthwhile to construct it for educational
aspect, and supports to set up any experimental systems
for laboratories and undergraduate schools by students
themselves.

6. CONCLUSION

This paper described the configuration of experimental
systems based on MATX and demonstrated its effectiveness

and advantages. MATX provides the real-time environment
called RTMATX. In the configuration based on RTMATX,
any devices can be utilized as long as the corresponding
device drivers for Windows OS use are provided. However,
user defined wrapping functions are required to plug MATX
to the device drivers. We noticed the several notes when
the user defined wrapping functions were developed.

The real-time performance with RTMATX was investigated
from the jitter variation point of view. As the result, we
found that the time resolution was 1.0 [msec] and the
accuracy was also 1.0 [msec]. The frequency of abnormal
sampling period cases seemed only up to 5.0%. Of course
if any heavy load programs were running, different results
might show up.

Swinging-up a Furuta pendulum by a SDRE control was
demonstrated as a sample case of the proposed environ-
ment. In that example, the matrix SDRE should be solved
every sampling period, however, this was realized easily
thanks to the good description of MATX. The experimental
results illustrated the effectiveness of the proposed envi-
ronment.

ACKNOWLEDGEMENTS

The authors would like to express our thanks to Prof.
Masanobu Koga, who developed and is maintaining MATX,
for his great contribution to CAD for control system
designs and real-time implementation environment with
MATX.

REFERENCES

P. Koopman et al. Undergraduate embedded system
education at Carnegie Mellon. ACM Tras. on Embedded
Computing System (TECS), Vol. 4, Issue 3, pp. 500–528,
2005.

M. koga and K. Furuta. A high-performance programming
language (interpreter and complier) for science and
engineering computations. Proc. IEEE Int. Symp. on
Comp.-Aided Contr. Sys. Design, Napa, pp. 15-22, 1992.

M. Koga. MATX/RtMATX: A Freeware for Integrated
CACSD. Proc. of CACSD’99, Kohala Coast-Island,
Hawai’i, U.S.A., pp. 451–456, 1999.

T. Hoshino and K. Furuta. Modeling and Simulation of
Mechanical Systems – Combination of a Symbolic Com-
putation Tool and MaTX –. Proc. of CACSD’99, Kohala
Coast-Island, Hawai’i, U.S.A., pp. 462–467, 1999.

S. Hayakeyama and Y. Pan. MATX Aided Control Educa-
tion. Proc. of CACSD’99, Kohala Coast-Island, Hawai’i,
U.S.A., pp.480–485, 1999

K. J. Åström, M. Iwase, K. Furuta and J. Åkesson. Safe
Manual Control of Pendulums - A Human Adaptive
Mechatronics Perspective -. International Journal of
Assistive Robotics and Mechatronics, Vol. 7, No. 1, pp.
3–11, 2006.

T. Çimen. State-Dependent Riccati Equation (SDRE)
Control: A Survey. Proc. of the 17th IFAC world
congress, Seoul, Korea, July, pp. 3761–3775, 2008.

