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Abstract

This paper illustrates an efficient way of modeling me-
chanical systems and performing the numerical simu-
lation, by combinationally using symbolic and numer-
ical computation tools. Since deriving the model and
its minimal representation involves symbolic manipu-
lations of equations, it must be handled by the sym-
bolic computation tool. On the other hand, the simu-
lation task requires numerical evaluations of the same
object repeatedly; it can be efficiently processed by the
numerical tool, especially when the values of objects
are immediately available. The key point is how to
export the symbolic objects easily into the numerical
environment. The authors try to automatically gener-
ate source codes of the objects for the numerical tool,
and join two environments on the source level. The
stabilization of the spherical pendulum is served as an
example, and its modeling and the simulation using

Mathematica/ MATX are included.

1 Introduction

In the computer-aided control system design, both
symbolic and numerical manipulation tools for equa-
tions play important roles. Usually, since a symbolic
object has more complex internal data representation
than that of a numerical object, symbolic tools can
perform several kinds of operation other than numer-
ical evaluation. On the contrary, numerical tools can
evaluate numerical objects efficiently, in speed and size.
By combinationally using both kinds, flexible manipu-
lation of equations is made possible.

The modeling and simulation of mechanical systems
are typical examples where such 'mixed’ manipulation
of equations is effective. The structural model is sys-
tematically given through the Lagrangian formulation
with some symbolic operations. Once the parameter
values are identified, the model becomes "fixed’ to give a
numerical object which is used in the numerical simula-
tion. Recent rapid growth of computing power enables
us to handle mechanical systems with many degrees of

freedom (d.o.f.). The use of the symbolic tool as well
as the numerical tool is getting more important and
brings the design task more possibilities. An example
of Maple/Scilab combination is found in [2].

This paper deals with the modeling and the simulation
of mechanical systems using symbolic and numerical
software, focusing the task assignment: the structure
is modeled by Mathematica and quantitative modeling
is done by MATX package [1]. Since MATX provides a
compiler as well as an interpreter, the fast execution
of simulations of large scale systems becomes possible
when the values of objects are immediately available.

It should be noted, that in some cases, the modeling
process, the simulation task, and even the control com-
putation can be accomplished without symbolic mod-
els. For example, the well-known recursive Newton-
Euler algorithm and the unit vector method numeri-
cally construct the simulation model; it is also useful
in computing the linearization feedback. Nevertheless,
since symbolic models work better than the recursive
model when the d.o.f. is small and there also exist
many cases where symbolic models are necessary. In
addition, the symbolic manipulation of equations is re-
quired in other cases of controller design: the factoriza-
tion approach over polynomial matrix ring or rational
polynomial matrix field, or the feedback linearization
method via differential geometric approach. This paper
includes these cases within its scope.

After summarizing a typical modeling process in the
next section, the task assignment and exporting the ob-
jects are described in section 3. The proposed method
will be illustrated with an example on the spherical
inverted pendulum [4] in section 4.

2 Models and the modeling

The following three models are typically used in the
design process of controllers for mechanical systems:

Identification model: The equations of motion or the
energy of the system can be represented as a regression
form since they are linear with respect to the dynamics
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Figure 1: Symbolic and numerical operations in the CACSD for mechanical systems

parameters. Their least-square estimates are obtained
based on either regression model of the equations of
motions or of the system energy.

Simulation model: The numerical simulation is to
solve the initial value problem of the equations of mo-
tion via Runge-Kutta algorithm, for example. The non-
linear state equation, which gives time derivative of the
state vector is required as the simulation model.
Controller design model: When designing con-
trollers, a reduced or transformed model is often used
instead of the original.

Given a mechanical system, the derivation of these
models can be summarized as follows.

System description: To formulate the system, de-
scription of both kinematics and dynamics are neces-
sary. While the well-known Denavit-Hartenberg (D-H)
notation describes the kinematics by attaching local co-
ordinate frames fixed to each body, the modified D-H
notation is used hereafter since it has several advan-
tages over the original [3]. The inertial parameters,
i.e., the mass, the inertial tensor, and the position of
the center of gravity, of each body are measured in each
local coordinate. Since when all the parameters above
are available, the numerical construction of the model
is possible as mentioned earlier, this description gives
another alternative 'model’ of the system.

Parameter reduction: The parameters above is re-
dundant in the sense that not all of them are iden-
tifiable; in order to get the identifiable set (also re-
ferred to as the base parameters; consisting of base in-
ertial parameters and friction parameters), the param-
eter reduction is necessary. The reduction procedure

is translated in the parameter space [5]. The reduc-
tion corresponds to grouping some parameters, and it
can be performed by recursive symbolic replacements
of parameters. This reduction also reduces the compu-
tational amount.

Energy of the system: The kinematics of the system
can be described in terms of the homogeneous coordi-
nates and their transformations. Based on the analysis,
the total kinetic energy T and the total potential en-
ergy U of the system can be computed. It involves
symbolic operations of matrices and vectors, and sym-
bolic differentiations.

When identifying the base parameters using the energy
model, the Hamiltonian of the system H := T + U is
transformed into the regression model:

AH = A¢,(¢.9) a=W, (1)

where q is the generalized coordinate, a is the vector of
the base parameters and A¢,(-) is the regressor; W is
the supplied energy. This transformation, i.e., the con-
struction of ¢,(-) is done by symbolically extracting the
coefficient of each base parameter from H. Based on
the regression model, the optimization of the exciting
trajectory and the identification experiment are carried
out to determine the estimates of the base parameters.
Equations of motion: Using the Lagrange equation,
the equations of motion of the system are derived by
symbolic differentiations of Lagrangian L:=T — U:
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where R is the dissipation energy, Q;’s are the gener-
alized forces, and N is d.o.f. of the system. Equations



(2) can be rewritten into the following form:

M(q)§+ F(q, q) =, (3)
F(q,q):=C(q, ) +Vq+G(q).

In order to construct the simulation model, i.e., the
time derivative of the state vector

dlq] _ q
i q]—[M(qw(—F(q, p+n) W

M(+) and F(-) are symbolically extracted from (3). By
evaluating them using identified base parameters, the
right hand side of (4) becomes fixed function vector of
q and ¢, which serves as the simulation model.

The regression model for parameter identification
based on equations of motion can be similarly con-
structed as (1):

¢'d(q7 q, é)Ta’ =T (5)

by extracting the coefficients of the base parameters
from (3).

Model reduction/transformation: Obtaining a
model for designing controllers may involve further
symbolic manipulation of (3). To design a standard
linear controller for example, we need a linearly ap-
proximated model of (4) around given operating point

[¢°T, ¢°T]T in the state space. To this end, series ex-
pansion of (4) is symbolically computed to give
d g q
- 2 = A 3 B 6
d [q] [q] e ©

where ¢ := g—¢°. (6) will be exported as two constant
matrices A and B for further numerical computations.
Other transformations are also possible; for example,
the feedback linearization are computed using Lie al-
gebra, which is accomplished essentially by symbolic
differentiations and symbolic matrix manipulations.

Figure 1 shows the flow of the modeling process. The
structural modeling is performed by symbolic opera-
tions, and it terminates by separating symbols in two
kinds: parameters and variables. Once the symbols
are separated, further processing can be handled by
numerical tools.

The modeling procedure similar to the above are im-
plemented in several modeling program packages, such
as Robotica (on Mathematica), ROSAM (on Maple),
SYMORO+ (on Mathematica; see [3]). The authors
also developed a program package Moderato on Math-
ematica to execute the symbolic modeling process.
There also exist program packages for numerical mod-
eling such as Robotics Toolbox (on Matlab) and Space-
Dyn (on Matlab).

3 Controller design and the simulation

3.1 Use of a numerical tool

Numerical simulations require numerical evaluation of
equations of fixed form. The use of simple data for-
mat for the variables, such as the standard floating
point number, e.g., is preferable for the fast evaluation.
Therefore, the fixed objects generated by symbolic op-
erations will be transformed into numerical objects and
exported into the numerical computation environment.
When exporting objects, how easily it is done is the
most important point.

In some cases, however, thus exporting objects may not
be necessary. For example, Mathematica can handle
objects of simple data format, generated by compiling
symbolic object with Compile[] function. Since eval-
uation of the compiled object is performed faster, fast
numerical operations is also possible on Mathematica;
thus the aim is achieved. Still, since most of the current
controller design algorithms are finally translated into
numerical operations, and there are a lot of numerical
CAD software on which these algorithms are imple-
mented, converting into numerical objects is currently
practical, and convenient for further computations.

3.2 Exporting objects into MATX environment
The authors used MATX CAD software package [1] as
the numerical tool. MATX is a programming language
with C like syntax and has many sophisticated data
types for control system design. It provides two kinds
of processing styles: an interactive session environment
matx and a compiler matc. The latter compiles MATX
source codes into the 'native’ objects and generates a
executable code on the operating system by linking the
objects. Moreover, matc can handle (link) other native
objects no matter which compiler generates them; it
may be C, FORTRAN, or other compilers. Many exist-
ing resources written in these languages can be directly
incorporated.

In spite that Mathematica has C code generating func-
tion, CForm[], the authors developed a similar function
MaTXForm[] on Mathematica which translate Mathe-
matica object into MATX syntax to export symbolic
objects as source code of MATX (List 1). This maxi-
mally utilizes the syntactic advantage of MATX over C
language while CForm[] approach is also possible.

In[20]:= H

0ut[20]= {{al + 2 a3 Cos[q2[t]], a2 + a3 Cos[q2[t]]},
> {a2 + a3 Cos[q2[t]], a2}}

In[21]:= MaTXForm[H]

Out[21]= [[al + 2*a3*Cos(x(2)), a2 + a3*Cos(x(2))][a2\

> + a3*Cos(x(2)), a2]l]

List 1: Translation by MaTXForm[] (on Mathematica)
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The simulation model, i.e., M(-) and F(-) in (4) are
exported (saved in a file) and merged into the source
code of MAT'X;; it will be processed by matc to generate
a binary object code. On the other hand, the controller
design model, A and B in (6) are included into a source
code for the controller design; it will be processed by
matx.

Figure 2 shows the relations between files in the
combined Mathematica/MATX environment described
above. The code for symbolic modeling (*.m) is pro-
cessed by Mathematica, and the computed models are
saved as MATX source code (*.mm) or in C format
(*.c). The simulation model, if it is self-contained,
is compiled with matc to generate a executable file
(a.out). Otherwise, it is compiled into an object mod-
ule (with unresolved symbols; *.0), and finally linked
together with other object modules into a executable
file; matc works as the linker. This separated compila-
tion matches to the different update-frequencies of the
modules; usually, the simulation model is updated less
frequently than the controller. The simulation model
and the relating materials are archived into a file as a
library of object modules (*.a); this makes a way of
maintaining a database of models in suppressed form.
The model for designing controllers is incorporated into
a controller design program. It is interactively pro-
cessed with matx. The resulting controller is saved as
constant matrices in a file (*.mx) and will be used in
the closed-loop simulation.

4 Example: The Spherical Inverted Pendulum

This section describes the modeling and the linear con-
troller design using Mathematica and MATX for stabi-
lizing the spherical pendulum.

The pendulum system consists of a solid aluminum rod

Figure 3: The spherical inverted pendulum

Table 1: Modified D-H parameters

(3 a; di (87 02'
1 0 0 0 01
2 a9 0 0 02
3 as 0 7T/2 93
41e(=0) 0 w2 0,

Table 2: Inertial parameters
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and a SCARA manipulator (Figure3), and can be re-
garded as a serial connection of four rigid links. The
third link is virtual. Four local coordinates are attached
as Figure3. The corresponding modified D-H param-
eters are determined as Table 1, which completes the
kinematics modeling. The inertial parameters are mea-
sured in each coordinate as Table 2; since each body
is symmetric, the off-diagonal entries of inertial tensors
are zero. p and [ are the linear density and the length
of the pendulum rod.

List 2 and List 3 are the parameter files for Mathemat-
ica. By grouping the inertial parameters, 8 parameters
are reconstructed as the base inertial parameters as

(* gravity acceleration *)
g = {0, 0, -G};

(* D-H parameters *)
a = {0, a2, a3, 0};
d = {0, 0, 0, 0};
Alpha = {0, 0, Pi/2, Pi/2};
q = {q1lt], q2[t], q3[t], q4[tl};

(* generalized coordinate *)
gc = q;
(* operating point *)
op = {0, Pi/2, Pi/2, 0, 0, 0, 0, 0};

(* actuated joints *)
AT = {1, 2};

(* measurements *)
Mes = q;

List 2: Parameters for symbolic modeling



dynp = {

Jixy -> 0, Jixz -> 0, Jiyz -> 0,
J2xy -> 0, J2xz -> 0, J2yz -> 0,
J3xx -> 0, J3xy -> 0, J3xz -> 0,
J3yy -> 0, J3yz -> 0, J3zz -> 0,
J4xx -> 0, J4xy -> 0, J4xz -> 0,

J4yy -> rhol*1°3/12,
Jayz -> 0,
J4zz -> rholx1~3/12,

six -> 11, sily =-> 0,
s2x -> 12, s2y -> 0,
s3x -> 0, s3y -> 0, 83z -> 0,
s4x -> 1/2, s4y -> 0, s4z -> 0,

m3 -> 0, mé4 -> rholx*l,
V3 ->0, V4 ->0

List 3: Description of dynamics parameters

shown in Table 3; the relation to the original parame-
ters are given as

;mB = pls/?’
alr:a:4 = _pl3/3
t1 = Ja1 +mal? + maal + plad
222 = JZZ2 + mzl% + pla% 7
;23 = p13/3 ( )
;z4 = :013/3

mshy = mals + plas

msh, = pl?/2.

Further symbolic processing gives two models: the sim-
ulation model, i.e., M(-) and F(:) in (4), saved in
math/M.mmx and math/F.mmx and the linearly approxi-
mated model, i.e., A and B in (6), saved in math/A .mmx
and math/B.mmx. Thus the symbolic modeling is com-
pleted.

The simulator is defined as a function pend() (List 4);
the expressions of two matrices M and F are read from
the files generated by Mathematica. The time deriva-
tive of the state vector is numerically computed. The
parameter values are defined in the header files. List 5
is the controller design code. It reads two matrices A
and B from the files; these are also generated by Math-
ematica. The linearly approximated model (4, B) is
transformed into the discrete-time model (Phi, Gamma).
The discrete-time LQ optimal controller is computed,
and the feedback gain F is saved in a file ctrl.mx.

The simulation is carried out by executing sim, reading
ctrl.mx, and the result is saved in a file sim-log. sim
is generated by linking the main body (sim.mm) and
the simulator (eqn.mm) through a library (1ibpend.a).

Table 3: Base inertial parameters

i i ;yi e TSy, ”@SLi ms,; m;
1] 0 0 7, 0 0 0 0
2| 0 0 !, mshy, 0 0 0
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#include "mdefs.h"
#include "scara.h"
#include "pend.h"
#include "base.h"

Func void pend(dx, t, x, u)
Real t;
Matrix x, dx, u;

Matrix M, F;

M =

#include "math/M.mmx"
F = trans(

#include "math/F.mmx"

H

dx = [[x(5:8)1[M"*(-F + u)1];

List 4: Simulation model (MATX: eqn.mm)

#include "mdefs.h"
#include "scara.h"
#include "pend.h"
#include "base.h"

Func void main()

{
Matrix A, B, Q, R, P, F, Phi, Gamma;
Real dt;

Q = diag(12000.0, 3000.0, 5000.0, 1000.0,
800.0, 500.0, 500.0, 300.0);

R = diag(1.0, 1.0);

dt = 0.0084;

A=

#include "math/A.mmx"
B =

#include "math/B.mmx"

H

{Phi, Gamma} = c2d(A, B, dt);
P = DRiccati(Phi, Gamma, Q, R);
F = - (R + Gamma’*P*Gamma) “*Gamma’ *P*Phi ;

print F, dt -> "ctrl.mx";

List 5: Controller design code (MATX: lin.

mm)

Matrix F, op;
void pend();

Func void main()
{
Real dt;
Matrix x0;
Array TH, XH, UH;
void 1qQ);

read F, dt <- "ctrl.mx";

[[0.0, PI/2, PI/2, 0.0], Zz(1, 4)]’;
op + [[0.1, 0.1, 0.0, 0.0], Zz(1, 4)]1°;

op
x0

{TH, XH, UH} = Ode45HybridAuto(0.0, 5.0,
dt, x0, pend, 1q);

print [[TH] [XH][UH]] >> "sim-log";
Func void 1lq(u, t, x)
Real t;

Matrix u, x;

{
) u = [[Fx(x - op)]1[z(2, 1)1];

List 6: Simulation code (MATX: sim.mm)




SRCS = sim.mm
LIBSRCS = eqn.mm mes.mm
HDRS = scara.h pend.h base.h mdefs.h

MATXCC = matc
MATXLD = matc
AR = ar rcv
RANLIB = ranlib
CFLAGS = -02
LDFLAGS = -L.

0BJS = $(SRCS:.mm=.0)
LIBOBJS = $(LIBSRCS:.mm=.0)

.SUFFIXES: .mm

.mm.o:
$ (MATXCC) $(CFLAGS) -c $<
sim-log: sim ctrl.mx
sim
sim: $(0BJS) libpend.a
$(MATXLD) $(LDFLAGS) -o sim $(0BJS) -lpend
libpend.a: $ (LIBOBJS)

$(AR) libpend.a $(LIBOBJS)
$(RANLIB) libpend.a

eqn.o: $(HDRS) math/M.mmx math/F.mmx
mes.o: $(HDRS) math/mes.mmx

1lin.mm $(HDRS) math/A.mmx math/B.mmx
matx lin.mm -e ’main();’

ctrl.mx:

List 7: Makefile for simulation

List 7 is a Makefile for make utility; it shows the de-
pendencies of files and the relating operations which
have been described. matc works just like as a usual
compiler.

Since the simulation result can be saved as a simple text
file, several kind of post processing for the visualization
are possible; Figures 4 and 5 are the examples.

In this spherical pendulum case, given the kinematics
and the dynamics parameters, the symbolic modeling
was accomplished in 20 seconds, and the numerical sim-
ulation took less than 20 seconds including the code
compilation time, on a PC with PentiumlII 400 [MHz|
running Linux. Thus the described method and the
tools make the modeling and the simulation task easy.

5 Concluding remarks

The combinational use of symbolic and numerical tools
in modeling mechanical systems and in performing the
simulations has been described. An example of the
spherical pendulum illustrates the concrete modeling
procedure. This mixed usage approach is considered
to be effective other than mechanical systems when the
modeling consists of two phases: the structural model-
ing and the quantitative modeling.
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